INFLUENCE OF THE SURFACE SHAPE AND INDENTOR SIZE
ON THE CRITICAL CONDITIONS OF BRITTLE FRACTURE .

I. M, Kaganova UDC 539.4

1. At this time the question of the contact of paraboloids (the Hertz problem) [1] has been experimentally
and theoretically investigated. The specific distribution of the stresses near the area of contact in detail per-
mits the estimation of the fracturing load in this problem by both the criteria of the beginning of plastic flow
[2] and for brittle fracture [3].

The influence of the shapes of compressible bodies on the magnitude of the maximum pressure achiev-
able in the contact plane prior to the beginning of plastic flow was considered in [4] in an example of axi-
symmetric bodies bounded by the surface

z = Aru; (1.1)

the z axis is perpendicular to the contact plane, r is the radius vector in the contact plane, For A =1 such
a contact problem goes over into the Hertz problem, The results of this research show that the pressure in
the contact plane can be raised to the limit value py achievable by the Mises criterion [5] if the maximum
shear stress intensity is reached on the abutting surface and agrees with the site of the action of the greatest
normal contact pressure, The possibility of realizing such a state of stress is independent of the value of the
dimensional coefficient A governing the scale of the surface (1.1). A necessary condition for reaching the
pressure ps is the selection of the exponent A in (1,1) from the range 1/2 <A =A* (A* <1 is indeed deter-
mined by the strength and elastic characteristics of the material).,

The developed representation of the nature of mierocrack propagation during brittle fracture under a
spherical indentor [3] is extended in this paper to the case of an indentor whose surface is described by the
power-law function (1.1). The results obtained are applied to estimate the pressure in a miniature chamber
[6] where high pressure is produced during impressing a smooth conical indentor into a slab. Such a modifi-
cation of the extensively utilized apparatus of the "Bridgman anvil® type is promising for the solution of prob-
lems about expanding the range of pressures accessible to research, Transition of the dielectrics BN, C,
Si\Oz, and MgO into the metallic state, as observed on this apparatus, is reported in [7].

2. The brittle fracture criterion can be obtained from the energy balance equation {5]. In this case,
the change in free energy F associated with the presence of a crack of length ¢ is investigated, The crack
becomes wstable if its dimension ¢ = ¢k corresponds to one of the extremums of the function F(c), As the
tensile force grows, the crack grows quasistatically if c) determines the minimum F(e); the critical crack
is lengthened spontaneously under invariant external conditions if ¢y corresponds to the maximum F(c).

‘In such an approach to the problem, two parameters of the dimensionality of a length are introduced
from the beginning: the mean dimension ¢ of cracks existing in the material, and the ratio y/E, whose value
is determined by the interatomic binding force, The nature of the development of a dangerous crack depends
on the relationship between ¢, v/E, and the dimension of the domain of elevated tensile stresses in which this
crack is located.

During contact the values of ¢ and y/E should be commensurate with the dimension of the contact spot
ay during fracture. For indentors bounded by the surface (1.1), the value of @, for a given value of A is de-
termined by the magnitude of the coefficient A characterizing the size of the indentor. As will be shown be-
low, the "dimension® of the bodies making contact substantially affects the magnitude of the pressure attain-
able in the contact plane up to the time of brittle fracture.
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Near the center of contact all the principal values of the stress tensor correspond to compression,
which hinders crack development, Brittle fracture usually starts on the contact surface outside the area of
contiguity (z =0, ¥ = ¢, a is the radius of contact), where pure shear is realized under plane stress state
conditions: The components 0zz and orz of the stress tensor vanish, but 6pyp = —0py. The most probable
site of the beginning of brittle fracture is the edge of the contact spot where the tensile stress oypy reaches
its maximum value opy:

G = 52 L (2.1)

3 B

(Q is the magnitude of the compressive force and v is Poisson's ratio}. The stress oy, rises with the growth
of Q. The formation of circular conical cracks along the edge of the contact spot is observed in experiment,

The stress field near the contact surface is conveniently described by the principal values of the ten-~
sor ojk. Their numbering is chosen so that the principal stresses oy and o, agree on the surface z = ¢ with
the stresses opy and 0y, respectively. The stress oy agrees with the principal value oy,

It is shown [8]in experiments with spherical indentors that in a first approximation a conical crack de~
velops normally to the principal tensile stress oy. It is assumed below that this regularity is satisfied even
for cracks being formed under an indentor whose surface is described by (1,1),

For arbitrary axisymmetric indentors, the contact pressure around the edge of the area of contiguity
(r = a) decreases as (1 — r/a)l/2, This general dependence should even be felt by the rate of stress decrease
near the contact edge. For verification by the known Boussinesq formulas [1], the sfresses under an indentor
bounded by the surface (1.1) were computed numerically for different values of A, and the dependences oy =
o3(l) governing the tensile stress oy distribution along the direction of crack development assumed (Fig, 1).
The most convenient representation for the normal pressure distribution under an indentor of such shape is
obtained in [9], Following [3], where the formation of a conical crack during impression of a spherical in-
dentor into a slab was considered, we write oy(I) in the form

Gl(l):{0’+(6,n—~0)(’1——l/6), <8,

o', 1 > 6, (202)

which adequately describes the value of oy for I € 0.5¢; the spacing I is measured from the contact surface,
The ratios 8/ and o'/oy, depend slightly on A: 6/a =~ 0,13, ot/ = 0.1,

The influence of the indentor shape (the value of A in (1.1)) on the critical brittle fracture parameter
is determined by the dependence of the size of the contact spot, and therefore, by the magnitude of the stress
O (2.1) on the indentor geometry for a given load Q. Below, the results of [3] are written in a form acces-
sible to extension to the case of fracture under an axisymmetric indentor of arbitrary shape.

Solutions of the equation 8F(c)/8¢c = 0 in the stress field (2,2) are investigated on the basis of the theory
of fracture [10]. The function F(c) has three extremums for c = cy; the values of ¢y are ¢y, ¢y, ¢y if oy
does not exceed the critical value o} :

v 11 (oY (e 1+ Ty/3E 1/ 3E
Om R [7(—0—) (‘5) 1_\’2} ‘ - ﬁ‘/ - (2.3)
The dimension
] 4 CG ~ 9 9
€, R Cg [‘1 -+ —ET}, cg = 2yE/r (1 — v?) O, (2.4)

is determined by the maximum of F(c) for ¢; « 6. The value cg agrees with the critical size of the Griffith
crack [5] under a constant tensile stress ¢ = oy, The values of ci = ¢4 > § indeed determine the minimum
and maximum of the function F(c), respectively, For om = o} these extremums merge: c; = ¢, = ¢¥; as the
load grows the equation 9F(c)/8c = 0 has no real roots for ¢ >é:
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The asterisk marks values of all the parameters for oy, = ai“n. The change in the number of bossible equi-
librium sizes of carck for oy = afn is related fo the change in the stability conditions for surface cracks,
for which a spontaneous increase in whose dimensions will result in the appearance of a developed conical

crack,

Let cf be the mean size of a surface crack in the undeformed material, The difference in the nature
of the propagation of such cracks for different relationships between cf and the characteristic g1mensmns
cu, c* can be illustrated most clearly by a graph of the dependence of the mean pressure p, = Qr/vrar
on the size of the contact spot gy up to the time of fracture, Such a dependence is universal and should be
observed for arbitrary axisymmetric indentors, For a given value of oy, the mean pressure is determined
by means of (2.1), ‘

1) Let ¢f < cf. In this case, crack growth starts for some value oy, = o}, > 0¥, when the critical di-
mension ¢, diminishes to the value c¢f, A surface crack, which becomes unstable for oy, > ‘Tx*;v lengthens,
spontaneously causing complete fracture, It follows from (2,4) and (2.5) that o, = VoyE/[r(1 — Vz)Cf]. The
condition ef < cn"‘ governs the possible values of the radius of the contact spot during fracture: ayr >ay =
(1/8)(om/0")a/d)cf ~ 100cf (Fig. 2).

2) I cf<cr<c*lor ay<ar<ay; ay= (o' /om)(a/8)ef ~ 5cf), the conical erack will develop in two
stages., First, when the value of ¢, becomes equal to cf {for ﬂoim < crl".;l), the surface crack will grow to a
size corresponding to the equilibrium value ¢y, This increase in the crack depth is insignificant and not per-
ceived as complete fracture. Under further loading, the crack dimension increases in equilibrium until it
agrees with the value ¢, (¢; = ¢; = ¢¥ for oy = o¥,. Here the crack size grows abruptly, resulting in frac-
ture, The maximum tensile stress to the time of fracture is o, (Fig. 2).

3) If the radius of the contact spot during fracture is sufficiently small (ap < a,), which corresponds to
the inequality cf >c*, the domain of elevated stresses & near the surface is too small, and the development
of the surface crack occurs in a practically constant stress field o'. Fracture starts for om < am when the
value of the unstable dimension ¢, is commensurate with ¢f (Fig, 2).

To determine the magnitude of the fracturing load Qy as a function of the indentor geometry, the rela-
tionships (2.3)-(2.5) should be supplemented by an equation governing the radius of the contact spot as a func-
tion of the load, If the indentor surface is described by (1.1), then in conformity with {9}

shir _ QU —V)T (A +3/2)
& T TTVar e . (2.6)
The values of c’.f‘ and c* computed by means of (2.4) and (2.5) are constants characterizing this inden-
tor, Inequalities bounding possible values of the dimensional coefficient A governing the indentor size can be
compared by different relationships between cf, c;," and c¢*, Using (2.6), we obtain
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Summarizing the previous results, we write an expression for the fracturing load Qg‘) as a function of
the parameters governing the indentor shape

25 +1

* 2 (2A-1)
G227 acap,
f

- G, \4h—1
o=, 4P < a< 4P (2], 2.8)

2h+1
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The explicit form of QQ) for A > Ay\)((rn[]l/ZG")m"'1 is obtained successfully only asymptotically for A >
ASA)(Um/Zo")U"i, when ¢f > c*(A), In the particular case A =1 (a spherical indentor of radius R = 1/2A),
the estimates obtained above for the critical fracture conditions agree with the results in {3].

3, The expression (2.8) for the limit load QQ) permits estimation of the maximum pressure being de-
veloped in the contact plane up to the time of brittle fracture, Taking account of the results in [4], such com-
putations can be used as the initial data for the construction of high-pressure apparatus of the "Bridgman
anvil® type,

Comparing the fracture conditions under indentors whose shape is described by the equation z = Ar?h
for different A, it can be seen that fracture is made extremely difficult if the indentor surface is almost con-
ical (A = 1/2): The effects of plastic flow here appear only for high limit pressures (see Sec, 1); for a given
normal pressure P(0) at the center of contact, the value of the maximum tensile stress oy, governing the
appearance of brittle cracks on the edge of the contact spot fends to zero as A — 1/2: om(\) = {1 —21) x

[2a — 1)/(2A + 1)1P(0).
It can be shown that for A =1 the maximum normal pressure Pin = [(2A + 1)/2(21 — 1) {Q/1a?) is reached

at the center of contact, The value of Pin is determined by the known mean pressure Pp up to the beginning
of brittle fracture (see Fig, 2). For a given A the increase in the contact pressure can be expected in only
a small contact spot (ay < @y ~ 100c/), which corresponds to the values A > AZ,‘ (see (2T).T

For values of A close to 1/2, the pressure distribution in the contact plane is acutely inhomogeneous,
which permits obtaining a pressure near the center which is many times greater than the mean loading over
the area, The rise in the maximum pressure in the contact plane is associated with diminution of the size of
the domain in which the pressure is high,

A rounded-off conical indentor

2

>
w

< rg.

[

z(r) =

’ ,-;-’ . \ (3-1)
gt H{ g rs). o

fFor spherical indentors (A = 1, A =1/2R), the increase in the coefficient A corresponds to diminution in
the indentor radius.
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(the smooth part of the indentor goes smoothly over into a conical part at the point ry ry=Rtan 8, f=1/2—
@, 2a is the cone aperture angle) and a slab of artificial diamonds of the carbonado type in the apparatus of
[6] were used as working elements of a high-pressure-chamber.

Possibilities of the rounded-off cone-plane scheme have been discussed extensively in the literature,
This question has been examined in greatest detail in [11], where the magnitude of the maximum pressure
PI! being realized in such a chamber prior to the beginning of fracture is estimated by means of the value
of the tensile stress at the edge of the contact spot within the framework of the Hertz theory, from which
P ~ g0 kbar, Such an estimate is valid only for definite relationships between the round-off radius of the
cone R and the aperture angle 2@, when R is sufficiently large and the fracturing load is less than the force
needed for the conical indentor surface to take part in the contact, If the parameters of the system (3.1) allow
participation of the conical surface in the contact prior to fracture, then the results of [11] are inapplicable;
the value of PI! cited there is substantially lowered.

The normal pressure distribution P(r) under the rounded-off conical indentor can be determined by the
general formula [12] relating the value of P(r) to the shape of an axisymmetric indentor by the integral re-
lation .

: 1 (F(s)d
P(r)=_—2?5‘]/—s:_i2’ O<r<a! (3:2)

s
E | h—sS‘ 2’ (o) da
1-—-‘\’2 . ]/rm

0

F(s)=

(h is the indentor displacement).. The radius of contact a is determined from the equilibrium condition

Q = 2n | P(r)rdr, which can be reduced to the form

e 1)

a

L V z' (6) 0 (a® — 0% V%o = Q (1 — v?)/E.

0

An investigation of the expression (3.2), where z(r) is given by (3.1), shows that the conical indentor
surface takes part in the contact only for loads Q >Qg, where Q, is the force for which the radius of the
contact spot is a = ry

Etg ﬂr‘z)
(t—+)"

| no'

Qo=

For Q <Q, the pressure distribution in the plane of contact can be determined by means of the Hertz

solution: P(r) = (3/2)@Q/ra®}V1 ~ r’/a’. For loads Q »Q,

£ Y
In 1tV—rie ], r<ro,
Etgp rofa+ )/ r3fat = fa?

41—+ a a®
‘IH(T +l/7"-__ 1), r>ry:

Piry= (3.3)

here a ~ 2((1 — )Q/rE tan A2,

For r >, formula (3,3) describes the dependence of the contact pressure on the radius r for conical
indentors (r, = 0). The logarithmic growth of the pressure at the center of contact can hence be obtained di-
rectly for ry < @ as a result of taking the average over a small area of radius r.

Polycrystalline diamonds of the carbonado type are a new ultrahard material for which brittle fracture
is characteristic., The load at which fracture of the indentors fabricated from this material occurs can be
estimated by means of (2.8).
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The condition Qq < Q. in the system (3.1), where QL is the fracturing load of a spherical indentor,
governs the relationship between the parameters R and B, allowing participation of the conical indentor sur-
face in the contact. The inequality Q, < Q). is satisfied if

3 an(t— )y
tg5<1—2v‘/ rp , R>R,

9n? (%\) (%n‘) (=) /)
tg"pi < 2 {1 — 2v)? T i< H“’

{3.4)

where

py= 152 (2)(2) ‘/%;i)?

The lack of confident data about the value of the surface energy v and the mean size of the surface
cracks cf in diamonds of the carbonado type makes difficult a realistic estimate of the magnitude of the pres-
sure in the scheme under consideration. However, if it is assumed that the value of ¢f agrees in order of
magnitude with the usual sizes of surface cracks in brittle materials [3] (Cf ~ 10-4 cm) then the value of ¥
can be evaluated by using the data about the fracture of large-radius spherical indentors when it is sufficient
to know the value of the tensile stress on the edge of the contact spot to estimate fracture (see Sec, 2), It is
indicated in [6] that the mean pressure during fracture of balls of radius R ~ 2-2.,5 cm is on the order of
4+10* kg/em?, For E ~ 10" kg/cm? (the value of Young's modulus for diamonds), this correspond*; to the
value ¥ ~ 1.5 .10~ kg/cm,

The results of computations [11] are valid only outside the domain (3,4) for R >R, R, ~ 0.4 cm, Upon
compliance with the inequalities (3.4), the pressure PP should be estimated by {(3.3), where Q = Qg/ 2),
the value of Qg/ 2 is determined from expression (2.8) for A = 1/2. Here the pressure at the center of con~

tact can reach values on the order of 10° kg/em? without fracture, Thus, for instance, for a cone aperture
angle 2a ~ 160° and radius R ~ 10~ cm the pressure will be PP ~ 1,5 +10% kg/cm?,

It should be noted that the examination performed above of the fracture conditions assumes the presence
of a surface crack of given size ¢r at the edge of the contact spot for any size of the area of contiguity, This
assumption is valid if a » cf. If fracture occurs at the contact spot whose size is on the order of the spacing
between surface cracks, then it can turn out that a crack of the size c¢f will not be in the domain of elevated
tensile stresses for a = ay, and the indentor will sustain the load Q >Qy, In this sense the values obtained
for PX* must be understood as the lower bound for small contact spot sizes,

The author is grateful to R, G. Arkhipov who had a detailed acquaintance with the research and propoesed
a number of changes contributing to a more graphic elucidation of the results, to B, V, Vionoradov, G, N,
Ermolaev, A. V, Rakhmanina and E, N, Yakovlev for interest in the research and for useful discussions,
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COMPUTATION OF EFFECTIVE PLASTICITY
CHARACTERISTICS OF INHOMOGENEOUS MEDIA

V. V. Dudukalenko, 8, I, Meshkov, UDC 539,389,1
and L, A, Saraev ‘

Macroscopic mechanical characteristics of a composite material, representing a mixture of inclusions
and host, are determined by the mechanical properties of the phases and its geometric configuration, We de-
fine the composite configuration by that uniform distribution of the spherical inclusions in the host so that the
characteristic function " equals one at the inclusions -and zero at the host and is statistically homogeneous
and isotropic. With respect to the mechanical properties of the phases, we limit ourselves to the condition
that the plastic properties of the inclusions be higher than th; plastic properties of the host, Hence, the host
can be considered ideally elastic in a definite deformation range, and the inclusions ideally elastic—plastic
Both phases are interconnected such that slip of the inclusions in the host is excluded,

1. The materials of the host and the inclusions are considered isotropic and Hooke's law in the phases
is written in the form

0;5 = 24 (€15 — €53) + 8; hahns

where pgy, Ay are the Lamé parameters, Oij» €ijs eg. are components of the stress, the total and plastic de-

formation tensors, and @ =1 corresponds to the host and @ =2 to the inclusion, The plastic deformations
satisfy the incompressibility condition eﬁk = 0, The plastic properties of the inclusions are determined by

the Mises plasticity condition SijSij = k2, where Sij and k are the deviator components of the stress tensor
and the plasticity limit of the inclusions, respectively,

An investigation of the extremum [1] of the function
L=~ {S [D (D)~ 5 W (er;—ebsy &y — e’i’,-)] av — S(pivi + gqiuy) dS} (1.1)
\'2 S

determines the properties of the inhomogeneous medmm Here D(sp) = k(x)V el ep] is the dissipative function
for the selected plasticity condition [2};

5 W(eij — by &) an) =2p(z) (eu e?j) (Eij - *’Ii’i) + A (Z)erntrn
is the rate of change of the elastic energy, &ij, Eli)' are the components of the total and plastic strain rate

tensors, uj, vj are the displacements and the velocities, pj, qj are the loads and their velocities on the sur-
face, The total volume V is a simply connected domain, The random stress, strain, and their velocity fields
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